Objectives

- Explain the difference between aerobic and anaerobic metabolism
- Describe the importance of tissue perfusion
- List the four elements of the Fick principle
- List the primary components of the cardiovascular system and their roles

Objectives

- Discuss the role of water in its relationship with body function
- Discuss the fluid compartments of the body
- Identify the significant anions and cations in the body
- Explain the role of the semipermeable membrane in the function of the cell
Objectives

- Discuss the concepts of diffusion, facilitated diffusion, osmosis, osmotic pressure, and active transport
- Give examples of isotonic, hypotonic, and hypertonic solutions
- Explain the function of plasma, erythrocytes, platelets, hemoglobin, and hematocrit in blood

Objectives

- Describe the role of antigens and antibodies in the body
- Explain the Rh factor in blood
- Describe acids and bases in relation to pH
- Explain how the buffer systems, respiration, and kidney function help to maintain acid-base balance in the body

Objectives

- Describe the three principal stages of shock
- List the five types of shock
- Discuss the proper assessment and management of the patient in shock
- Describe fluid replacement in the management of the patient in shock
Pathophysiology of Shock

- **Perfusion**
- **Anaerobic metabolism**
 - Without O\(_2\)
- **Aerobic metabolism**
 - With O\(_2\)
- **Hypoperfusion**

Pathophysiology of Shock

- **Fick principle**
 - Adequate ventilation
 - O\(_2\) binds with hemoglobin
 - O\(_2\) transported via circulatory system
 - O\(_2\) off-loaded in capillaries

Pathophysiology of Shock

- **Cellular metabolism**
 - Cellular respiration
 - Pyruvic acid
Pathophysiology of Shock

- Aerobic metabolism
 - Person breathes O₂
 - O₂ binds with hemoglobin

Pathophysiology of Shock

- Anaerobic metabolism
 - Shock patient

The Cardiovascular System

- Closed system of blood vessels
The Cardiovascular System

- Stroke volume

Dependent on:
- Contractility
- Preload
- Afterload

The Cardiovascular System

- Contractility
 - Extent and velocity of muscle fiber shortening
 - Influenced by
 - \(O_2\) supply and demand
 - Degree of sympathetic stimulation
 - Electrolyte balance
 - Drug effects
 - Disease

The Cardiovascular System

- Preload
 - Affected by volume of blood returning
 - More blood ↑ preload
 - Less blood ↓ preload
The Cardiovascular System

Afterload
- Affects stroke volume
- Dictated by arterial blood pressure
- Factors that increase afterload
 - Obstruction of aortic valve
 - Circulatory fluid overload

Blood pressure
- Force exerted against arterial walls
- Cardiac output times peripheral resistance

Blood vessels
- Arteries
- Arterioles
- Capillaries
- Venules
- Veins
The Cardiovascular System

- Microcirculation system
 - Arterioles
 - Capillaries
 - Venules

Fluid and Electrolytes

- Water

- Solvent
 - Solute
 - Electrolytes
 - Nonelectrolytes
Fluid and Electrolytes

- **Intracellular fluid**
- **Extracellular fluid**
 - Intravascular fluid
 - Interstitial fluid

Fluid and Electrolytes

- **Homeostasis**

Fluid and Electrolytes

- **Electrolytes**
 - **Salts**
 - Ions—electrical current
 - Cations—positive charge
 - Anions—negative charge
Fluid and Electrolytes

- Cations (+ charge)
 - Sodium (Na+)
 - Potassium (K+)
 - Calcium (Ca2+)
 - Magnesium (Mg2+)

- Anions (- charge)
 - Chloride (Cl-)
 - Bicarbonate (HCO3-)
 - Phosphate (HPO42-)

Cellular Membranes

- Semipermeable
 - Allows substances to pass through

- Permeability
 - Degree to which substances are allowed to pass through

Cellular Membranes

- Diffusion
 - Movement of particles
 - Solutes
 - Passive process
Cellular Membranes

- **Facilitated diffusion**
 - Transport protein
 - Passive transport

Osmosis
- Movement of water across semipermeable membrane

Fluid and Electrolytes
- **Active transport**
 - Across membrane from ↓ concentration to ↑ concentration
 - Faster than diffusion
Fluid and Electrolytes

- Isotonic solution
 - Osmotic pressure equal to normal body fluid
 - 0.9% normal saline, lactated Ringer’s

- Hypotonic solution
 - Osmotic pressure less than body fluid

- Hypertonic solution
 - Osmotic pressure greater than body fluid

The effects of tonicity on a red blood cell

Blood

- Three functions
 - Transportation
 - Regulation
 - Protection
Blood

- Plasma
- Fluid portion
- Erythrocytes (E)
- Leukocytes (L)
- Hemoglobin
- Hematocrit
- Platelets

Antigen
- Protein that triggers formation of antibodies

Antibody
- Protein developed in response to an antigen

Rh factor
- Antigen factor considered during blood typing

Blood type is determined by the antigens present on blood cell membranes.
Acid-Base Balance

- **pH**
 - Measure of relative hydrogen ion concentration

- **Acid**
 - ↑ hydrogen ion concentration, pH < 7.0

- **Base**
 - ↓ hydrogen ion concentration, pH > 7.0

Acid-Base Balance

- **Buffer systems**
 - Fastest acting defenses
 - Act as chemical sponge
 - Major buffer system
 - Bicarbonate/carbonic acid
Acid-Base Balance

- **Respiration**
 - Vital role
 - Regulates concentration of carbon dioxide

- **Kidney function**
 - Role is complex
 - Able to deal with alkalosis or acidosis

Primary acid-base imbalances
- Respiratory acidosis
- Respiratory alkalosis
- Metabolic acidosis
- Metabolic alkalosis

Acid-Base Balance—Respiratory Acidosis
Stages of Shock

- Compensated shock
- Decompensated shock
- Irreversible shock
Stages of Shock—
Decompensated Shock

Types of Shock

- Primary mechanisms
 - Fluid loss
 - Significant vasodilation
 - Pump failure

- Hypovolemic shock
- Cardiogenic shock
- Neurogenic shock
- Anaphylactic shock
- Septic shock
Types of Shock—
Hypovolemic Shock

Types of Shock—
Cardiogenic Shock

Types of Shock—
Neurogenic Shock
Assessment and Management of the Patient in Shock

Evaluation directed at:
- assessing oxygenation
- perfusion of body organs

Goals
- Patent airway
- Oxygenation and ventilation
- Perfusion

Level of responsiveness
- Assessed throughout survey
- Better indicator
- Significant alteration
- Alcohol and drugs

Airway assessment
- Opened and maintained
- Upper airway obstruction
 - Snoring
 - Gurgling
 - Stridor
Assessment and Management of the Patient in Shock

- Airway management
 - Airway adjunct
 - Endotracheal intubation
 - Suctioning
 - Positioning

- Breathing and oxygenation assessment
 - Adequacy of air exchange
 - Rate and depth of respirations

- Breathing and oxygenation management
 - Assist breathing
 - 100% oxygen
 - Nonrebreather mask
 - Nasal cannula
 - Pulse oximeter
Assessment and Management of the Patient in Shock

Circulation assessment
- External bleeding
- Pulse rate and character
- Skin color, appearance, temperature
- Capillary refill

Circulation management
- Positioning
 - Supine
 - Legs elevated
 - Respiratory compromise

Fluid replacement
- Common solutions
 - Lactated Ringer’s
 - Volume replacement
 - 0.9% sodium chloride
 - Volume replacement
 - 5% dextrose in water
 - To keep vein open
Assessment and Management of the Patient in Shock

- Fluid replacement
 - Blood preparations
 - Packed erythrocytes
 - Plasma
 - Platelets
 - Whole blood

Assessment and Management of the Patient in Shock

- Maintaining body temperature
 - Factors
 - Environmental/weather
 - Oxygen and IV fluids
 - Patient location
 - Protect the patient
 - Wet clothing
 - Cover patient
 - Vasodilation

Assessment and Management of the Patient in Shock

- Focus history and physical examination
 - Thoroughness depends on patient’s condition
 - Obvious life-threatening problems
 - Continual reassessment
 - Ask the patient
Summary

- Long-term survival depends on delivery of adequate amounts of oxygen and glucose to individual cells.

- Shock is inadequate tissue perfusion, causing lack of tissue oxygenation, which leads to anaerobic metabolism.

- Decreased blood flow is common in shock, may occur from hemorrhage, pump failure, or inappropriate systemic vascular resistance.

Summary

- Body attempts to compensate for shock by several mechanisms.

- Three stages of shock are compensatory, progressive, and irreversible.

- Progressive shock develops when body fails to compensate for insult.

Summary

- Signs and symptoms become more apparent during progressive shock.

- Survival depends on prompt recognition, rapid care, and prompt transport.

- As shock progresses, oxygen supply to cells decreases and cells resort to anaerobic metabolism, leads to production of lactate acid and to acidosis.
Summary

- In irreversible stage of shock, tissues die
- Trauma victim is evaluated for shock in primary survey
- Continue assessment for shock during secondary survey
- Reassess for developing shock until patient is delivered to hospital

Summary

- Treatment for shock includes adequate ventilation and oxygenation and further prevention of shock process
- Rapid transport is imperative
- Low blood pressure is late sign of shock

Summary

- Evaluation of shock begins with scene survey, mechanism of injury, and history
- If these factors indicate shock is or could be present, take measures to counter effects of shock