Chapter 7
General Principles of Pathophysiology

Objectives

Describe normal cell environment

Outline how alterations in water and electrolyte balance affect body function

Describe treatment of fluid/electrolyte imbalances

Describe body mechanisms to maintain acid-base balance

Objectives

Outline alterations in acid-base balance

Describe management of patients with acid-base imbalance

Describe cell or tissue alterations due to adaptation, injury, neoplasia, aging, death

Outline effect of cell injury on local/systemic body function
Objectives

- Describe alterations in body function due to genetic/familial disease factors
- Outline hypoperfusion syndrome
- Describe inflammatory and immune responses to cell injury or antigenic stimulation
- Explain how altered immunity and inflammation can harm body function
- Describe impact of stress on response to illness or injury

Scenario

Your patient appears acutely ill. His physician says he has a diagnosis of diabetic ketoacidosis. He is breathing rapidly, has a dry, furrowed tongue, and tenting skin. The physician tells you to watch for rhythm disturbances.

Consider

- What signs and symptoms of dehydration should you watch for?
- How should you treat the dehydration?
- Why is the patient breathing so fast?
- Should you attempt to slow his breathing?
- Why might this patient have increased potassium levels that can cause rhythm problems?
The Cell

- Fundamental unit found in higher life forms

Tissue Types

- Epithelial
- Connective
 - Including hematologic tissue
- Muscle
- Nervous

Intracellular Fluid (ICF)

- Fluid found in all body cells
- 40% of total body weight
Extracellular Fluid (ECF)

- Intravascular
 - Blood plasma
- Interstitial fluid
 - Between cells
 - Cerebrospinal fluid
 - Intraocular fluid
 - 20% of total body weight

Aging and Distribution of Body Fluids

- Water is the main component of body mass
 - Adults
 - 50% to 60% of total body weight
 - Newborn
 - About 80% of total body weight
 - Childhood
 - 60% to 65% of total body weight
 - Further declines with age

Water Movement Between ICF and ECF

- Osmosis
 - Flow of fluid across a semipermeable membrane from a lower solute concentration to a higher solute concentration
- Partial pressures of gases determine osmotic pressure
- Nongaseous particles (e.g., electrolytes)
 - Osmotic pressure determined by:
 - Number and molecular weights
 - Permeability of membrane
Osmosis

Solutions
- Hypertonic solution
- Hypotonic solution
- Isotonic solution

Diffusion
- Due to constant motion of atoms, molecules, ions in solution
 - Passive process
 - Moves particles from area of higher concentration to area of lower concentration
- Concentration gradient
Mediated Transport Mechanisms

- Carrier molecules
 - Proteins
 - Glucose
- Two kinds of mediated transport:
 - Active transport
 - Facilitated diffusion

Mediated Transport by a Carrier Molecule
Molecule Released on Other Side of Plasma Membrane

Water Movement between Plasma and Interstitial Fluid
- Fluid transfer between blood and interstitial fluid
- Due to pressure changes at arterial and venous ends of the capillary

Capillary Network
- Blood enters capillary network from arterioles
- Flows through capillary network into venules
- Arteriolar capillaries
- Venous capillaries
- True capillaries
- Thoroughfare channels
- Capillary sphincters
Sympathetic Innervation

- Sympathetic fibers innervate all blood vessels except:
 - Capillaries
 - Capillary sphincters
 - Most metarterioles
- Vasoconstrictor and vasodilator fibers

Diffusion across Capillary Wall

- Capillary flow
 - Hydrostatic pressure
 - Osmotic pressure
- Oncotic pressure
- Capillary and membrane permeability
Starling Hypothesis

Net filtration =
Forces favoring filtration − Forces opposing filtration

Alterations in Water Movement

- **Edema**
 - Fluid accumulation in interstitial spaces
 - Due to any condition that leads to:
 - Net movement of fluid out of capillaries into interstitial tissues

Pathophysiology of Edema

- **Normal interstitial space fluid depends on:**
 - Capillary hydrostatic pressure
 - Oncotic pressure by blood plasma proteins
 - Capillary permeability
 - Lymphatic channels collect fluid forced from capillaries by blood hydrostatic pressure and return it to circulation
Mechanisms Responsible for Edema

- Increased hydrostatic pressure
- Decreased plasma oncotic pressure
- Increased capillary permeability
- Lymphatic obstruction
- Increased capillary hydrostatic pressure
 - Venous obstruction
 - Sodium and water retention

Clinical Manifestations of Edema

- Edema may be localized or generalized

Localized edema
- Usually limited to:
 - Injury site (e.g., a sprained ankle)
 - Organ system (e.g., cerebral edema, pulmonary edema)

Generalized Edema

- More widespread

- Dependent parts of body
 - Often:
 - Weight gain
 - Swelling
 - Puffiness
 - Other symptoms from underlying illness
Water Balance, Sodium, and Chloride

- Water follows osmotic gradient established by changes in sodium concentration
 - Sodium and water balance are closely related

Water Balance

- Regulated by antidiuretic hormone
 - Secretion of ADH
 - Perception of thirst

- Release of ADH initiated by:
 - Increase in plasma osmolality
 - Decrease in circulating blood volume
 - Lowered venous and arterial pressure

ADH

- Increased plasma osmolality
 - Stimulates hypothalamic neurons (osmoreceptors)
 - Causes thirst perception
 - Increases ADH release from posterior pituitary
ADH

- After ADH release:
 - Water is reabsorbed into plasma from distal renal tubules and kidney collecting ducts
 - Amount of water lost in urine decreases
 - Plasma osmolality returns to normal as water is reabsorbed

Sodium and Chloride Balance

- Sodium
 - Major ECF cation
 - Sodium balance regulated by aldosterone
 - Hormone secreted from the adrenal cortex
 - Regulates:
 - Osmotic forces
 - Water balance

- Chloride
 - Major ECF anion
 - Provides electroneutrality with sodium
 - Increases or decreases in chloride are proportional to changes in sodium
Sodium and Chloride Balance

- Aldosterone is secreted when sodium levels decrease or potassium levels increase
 - Increases reabsorption of sodium, secretion of potassium by distal tubules of kidneys
- Renin is secreted by kidneys when blood volume or water balance is reduced

Renin-Angiotensin

- Renin stimulates formation of angiotensin I:
 - Then converted to angiotensin II
- Angiotensin II is a potent vasoconstrictor
 - Stimulates ADH secretion
- Results in:
 - Reabsorption of sodium and water
 - Elevation in blood pressure
 - Activation of renin-angiotensin system

Role of Adrenal Medulla in Regulating BP
Renin-Angiotensin-Aldosterone Mechanism

Vasopressin (ADH) Mechanism

Natriuretic Hormone
- Promotes urinary secretion of sodium
- Decrease in sodium tubular reabsorption
- Loss of sodium and water
Sodium, Chloride, and Water Balance

- Homeostatic mechanisms
 - Maintain constant balance between water intake and excretion
 - Water gained each day approximately equals water lost

Alterations in Water Balance

- Gain water primarily by:
 - Drinking fluids
 - Ingesting food containing moisture
 - Forming water through oxidation of hydrogen in food during metabolic process

- Body loses water through:
 - Kidneys as urine
 - Bowel as feces
 - Skin as perspiration
 - Exhaled air as vapor
 - Excretion of tears and saliva
Alterations in Water Balance

- Abnormal states of body fluid balance
 - If the water lost exceeds the water gained, there is a water deficit (dehydration)
 - If the water gained exceeds the water lost, there is a water excess (overhydration)

Dehydration

- Dehydration classifications
 - Isotonic
 - Excessive loss of sodium and water in equal amounts
 - Hypernatremic
 - Loss of water in excess of sodium
 - Hyponatremic
 - Loss of sodium in excess of water

Isotonic Dehydration

- Vomiting, diarrhea, infection, bowel obstruction

- Signs and symptoms
 - Skin turgor, oliguria, anuria, weight loss

- Treatment
 - Isotonic fluids
Hypernatremic Dehydration
- Diuretic use, sodium intake without water, diarrhea
- Dry, sticky mucus membranes, flushed skin, thirst, oliguria, increased thirst, altered LOC
- Treat with isotonic fluids

Hyponatremic Dehydration
- Diuretic use, perspiration, renal problems, increased water intake
- Muscle cramps, seizures, rapid pulse, diaphoresis, cyanosis
- Treatment with NS or LR
 - Rarely, use hypertonic saline

Overhydration
- Increased body water
- Excess intake, impaired cardiac or renal function, endocrine dysfunction
- Dyspnea, edema, polyuria, crackles, weight gain
- Treatment varies by cause:
 - Fluid restriction
 - Diuretics
Electrolyte Imbalances

- In addition to water and sodium imbalances, other electrolyte imbalances may occur
 - Potassium
 - Calcium
 - Magnesium

Potassium

- Major intracellular cation
- Needed for nerve, cardiac, skeletal function
- Excess excreted by kidneys
- Imbalance can cause sudden death

Hypokalemia

- Poor absorption, vomiting, diarrhea, renal disease, diuretics
- Malaise, weakness, dysrhythmias, decreased reflexes, faint heart sounds, hypotension, anorexia, vomiting
- Hospital treatment
 - Oral or IV potassium

Hyperkalemia
- Renal failure, burns, crush injuries, infections, excessive use, acidosis
- Dysrhythmias, irritability, abdominal distention, nausea, diarrhea, oliguria, weakness, paralysis
- Treatment
 - Life threats – calcium, glucose, insulin IV, albuterol
 - Hospital – K+ restriction, exchange resins, dialysis

Calcium
- Essential for:
 - Neuromuscular transmission
 - Cell membrane permeability
 - Hormone secretion
 - Bone growth
 - Muscle contraction

Hypocalcemia
- Endocrine dysfunction, renal disease, malabsorption
- Paresthesia, tetany, cramps, neural excitability, seizure, abnormal behavior
- Treatment
 - Calcium administration in hospital
Hypercalcemia

- Tumors, endocrine dysfunction, diuretics, excess vitamin D
- Muscle weakness, renal stones, altered mental status, seizures, bone pain, arrhythmias
- Treatment
 - Underlying problem
 - Diuresis with furosemide and NS

Magnesium

- Activates enzymes
- 50% in bone
- Excreted by kidneys
- CNS effect similar to calcium

Hypomagnesemia

- Alcoholism, diabetes, malabsorption, starvation, diarrhea, diuresis, disease with hypocalcemia, hypokalemia
- Tremors, nausea, vomiting, diarrhea, hyperactive reflexes, confusion, seizures, dysrhythmias
- Treatment
 - Magnesium sulfate
Hypermagnesemia

- Patients with chronic renal insufficiency
- Ingestion of magnesium-containing compounds
- CNS depression, dysrhythmias, muscle weakness, confusion, sedation, respiratory paralysis
- Most effective treatment: hemodialysis
- Also IV glucose and insulin

Acid-Base Balance

- Acids
 - Release hydrogen ions
- Bases
 - Receive hydrogen ions
- A solution increases in:
 - Acidity as hydrogen ions increase
 - Alkalinity as hydrogen ions decrease

Hydrogen Ion Concentration

- Hydrogen ion concentration
 - Expressed by pH
 - pH is negative logarithm (base 10) of hydrogen ion concentration
 - Strength of acid or base changed by 10 times with each unit change of pH
Buffer Systems

- Carbonic acid–bicarbonate buffer
- Protein buffering
- Renal buffering

Acid-Base Imbalance

- Any condition that increases carbonic acid or decreases base bicarbonate causes acidosis
- Any condition that increases base bicarbonate or decreases carbonic acid causes alkalosis

Respiratory Acidosis

- Carbon dioxide retention
- PCO₂ increase
- Increase ventilation
Respiratory Acidosis

- Possible causes
 - Respiratory depression
 - Respiratory arrest
 - Cardiac arrest
 - Medications
 - Chest wall injuries
 - Pulmonary illnesses, obstructed airway

Metabolic Acidosis

- Causes
 - Build-up of acid or loss of base

- Common forms
 - Lactic acidosis
 - Diabetic ketoacidosis
 - Acidosis related to renal failure
 - Acidosis related to ingestion of toxins

- Treat cause

Lactic Acidosis

- Causes
 - Ischemia, circulatory failure, shock
 - Extreme exertional states (seizures)

- Associated complications
 - Decreased cardiac contraction, hypotension, cardiac muscle refractory to defibrillation

- Treatment
 - Identify and treat underlying cause
 - Reestablish perfusion, cardiac output
 - Hyperventilation (possible), vigorous rehydration, sodium bicarbonate (possible) for cardiac arrest
Diabetic Ketoacidosis

- **Causes**
 - Complication of diabetes mellitus, alcoholism
 - Lack of adequate insulin

- **Treatment**
 - Administer NS

Renal Failure Acidosis

- **Causes**
 - Failure of kidneys to keep acid-base balance
 - Inability to efficiently excrete waste products

- **Treatment**
 - Identify and treat underlying cause

Ingestion of Toxins

- **Types**
 - Ethylene glycol, methanol, salicylate

- **Treatment**
 - GI evacuation, hemodialysis, diuresis, hydration, specific antidotes
Respiratory Alkalosis
- Hyperventilation decreases PCO₂
- Sepsis, shock, peritonitis, respiratory problems
- Treat cause, oxygenate, calm

Metabolic Alkalosis (Rare)
- Loss of hydrogen ions (usually stomach)
- Sodium bicarbonate or calcium carbonate ingestion
- Excess IV alkali
- Diuretics
- Treat cause

Mixed Acid-Base Disturbances
- Combination of respiratory and metabolic disorders
- Shock
- Cardiac arrest
- Others
Alterations in Cells and Tissues

- Cellular adaptation
 - Atrophy
 - Hypertrophy
 - Hyperplasia
 - Metaplasia
 - Dysplasia

Cellular Injury

- Cell unable to maintain homeostasis because of
 - Hypoxic injury
 - Chemical injury
 - Infectious injury (bacteria, viruses)
 - Immunologic and inflammatory injury
 - Genetic factors
 - Nutritional imbalances
 - Physical agents

Manifestations of Cellular Injury

- Accumulation of excess lipids, electrolytes, fluids
- Phagocytes engulf dying cells
- Cell swells
- Fatty changes
Cellular Injury—Systemic Manifestations

- Fever
- Malaise
- Loss of well-being
- Altered appetite
- Altered heart rate
- Leukocytosis
- Pain

Cellular Death/Necrosis

- Cell dies if it is irreparably damaged
- After cell death, structural changes occur in the nucleus and cytoplasm
- Lysosome membrane breakdown
- Enzymes digest cell
- Necrosis

Hypoperfusion

- Inadequate blood and nutrients to tissues

Cardiac output

- Depends on several factors
 - Strength of contraction
 - Rate of contraction
 - Amount of venous return (preload)

Compensatory mechanisms

Negative Feedback Mechanisms

- Baroreceptor reflexes
- Chemoreceptor reflexes
- Central nervous system ischemic response
- Hormonal mechanisms
- Reabsorption of tissue fluids
- Splenic discharge of stored blood

Baroreceptor Reflexes

- Maintain BP by negative feedback mechanisms
 - Lower BP if arterial pressure increases
 - Increase BP if arterial pressure decreases

Chemoreceptor Reflexes

- Low arterial pressure stimulates peripheral chemoreceptor cells in carotid and aortic bodies
- If oxygen or pH decreases, vasomotor center of medulla is stimulated
CNS Ischemic Response

- Activated with BP< 50 mm Hg
- Ischemia in medullary vasomotor center
- Activates vasomotor center
- Elevates arterial pressure
- If it persists, vagal centers are activated

Hormonal Mechanisms

- Adrenal-medullary mechanism
 - Epinephrine, norepinephrine release
 - Increased heart rate, stroke volume
 - Vasoconstriction

- Renin-angiotensin-aldosterone mechanism
 - Vasoconstriction
 - Water, sodium conservation

Hormonal Mechanisms

- Vasopressin mechanism
 - ADH causes vasoconstriction
 - Decreases urine production
Compensatory Mechanisms

- Reabsorption of fluids
 - Decreased capillary hydrostatic pressure
 - Fluid moves from interstitial to vascular space
- Splenic discharge of blood
 - Blood stored in venous sinuses
 - >200 mL can be released after vasoconstriction

Types of Shock

- Classified by primary cause
 - Two or more types may be combined
 - Primary problem is inadequate tissue perfusion

- Hypovolemic
- Cardiogenic
- Neurogenic
- Anaphylactic
- Septic
Multiple Organ Dysfunction Syndrome (MODS)

- Failure of two or more organ systems after severe illness or injury
- Septic shock is a common cause

MODS Pathophysiology

- Inflammatory response is triggered
- Fluid and cells leak into interstitial space
- Hypotension/hypoperfusion
- Complement, coagulation, kallikrein/kinin
- Thrombus formation, tissue ischemia
- Edema, cardiovascular instability, clotting abnormalities
- Tissue hypoxia, organ failure

Glucose

- Important fuel for producing energy
- Krebs cycle
 - Breaks down pyruvic acid into carbon dioxide and water
 - Much more efficient in producing ATP than glycolysis
 - Needs oxygen
Body’s Self-Defense Mechanisms

- Defense against illness and injury
 - First-line external barriers include:
 - Skin
 - Mucous membranes of the respiratory, digestive, and genitourinary (GU) tract
 - Second—Inflammatory response
 - Third—Immune response

Stages of Inflammatory Response

- Cellular response to injury
 - Energy depletion, autolysis

- Vascular response to injury
 - Hyperemia, vessel dilation
 - Leukocyte migration

- Phagocytosis
 - Leukocytes destroy pathogens
 - Exudate (pus) forms

Inflammatory Responses

- Acute inflammation
 - Local responses
 - Systemic responses
- Chronic inflammation
 - Inflammation ≥ 2 wks
Immune Response

- Types of immunity
 - Natural (native)
 - Acquired
 - Humoral immunity
 - Cell-mediated immunity

- Age and the immune response

Induction of Immune Response

- Antigen
 - Reacts with preformed components of immune system

- Immunogen
 - Antigen that can also induce formation of antibodies

To be immunogenic, the antigenic molecule must be
- Sufficiently foreign to the host
- Sufficiently large
- Sufficiently complex
- Present in sufficient amounts

- B lymphocytes
- T lymphocytes
Blood Group Antigens

- When combined with foreign plasma, red blood cells either clump together (agglutinate), or they do not.

- Two distinct agglutinins (substances on red blood cells acting as antigens) are responsible for this clumping.

Blood Group Antigens

- Four types of human blood have been identified: A, B, AB, and O:
 - Type A blood has anti-B antibodies in the plasma and will clump type B blood.
 - Type B blood has anti-A antibodies and will clump type A blood.
Rh Factor

- Presence or absence of Rh antigen on surface of red blood cells
- 85% of Americans are Rh positive

Hypersensitivity

- Altered immunologic reactivity to antigen
- Causes pathologic immune response after reexposure
- Abnormal responses include:
 - Allergy
 - Autoimmunity
 - Isoimmunity

Mechanisms of Hypersensitivity

- Immediate hypersensitivity reactions
 - Itching, hives
 - Anaphylaxis
- Delayed hypersensitivity reactions
 - Take several hours to 1 to 2 days to appear
 - At maximum several days after antigen reexposure
Immunoglobulins

- Antibodies, or immunoglobulins (Ig), respond to antigenic stimulation
 - IgG
 - IgM
 - IgA
 - IgD
 - IgE

Immunoglobulins

- IgG
 - Secondary immune response
- IgM
 - ABO incompatibilities
- IgA
 - Defends body surface against organisms
- IgE
 - Immediate hypersensitivity reactions
- IgD
 - Function unknown

Immunity and Inflammation Deficiencies

- Body's self-defense mechanisms fail to function at normal capacity

- Sources of the deficiency:
 - Congenital
 - Acquired
 - Infection (e.g., HIV)
 - Cancer (e.g., leukemia)
 - Immunosuppressive drugs
 - Aging
Acquired Immune Deficiencies

- Nutritional deficiencies
- Iatrogenic deficiencies
- Deficiencies caused by trauma
- Deficiencies caused by stress
- Acquired immunodeficiency syndrome (AIDS)

Neuroendocrine Regulation of Stress

- Sympathetic nervous system activated by stress
- Adrenal gland releases catecholamines
- Hypothalamus stimulates pituitary gland to release:
 - ADH
 - Prolactin
 - Growth hormone
 - ACTH

Catecholamines

- Stimulate:
 - Alpha-adrenergic receptors
 - Alpha-1 and alpha-2
 - Beta-adrenergic receptors
 - Beta-1 and beta-2
Alpha Receptors

- Alpha-1 receptors
 - Postsynaptic
 - On the effector organs
 - Stimulate contraction of smooth muscle

- Alpha-2 receptors
 - Presynaptic nerve endings
 - Stimulate alpha-2 receptors
 - Inhibit release of norepinephrine

Beta Receptors

- Beta-1 receptors
 - Primarily in heart

- Beta-2 receptors
 - Bronchial and arteriolar smooth muscle

- Beta receptors
 - Stimulate the heart
 - Dilate bronchioles
 - Dilate blood vessels in the skeletal muscle, brain, and heart
 - Aid in glycogenolysis

Cortisol (Hydrocortisone)

- Circulates in the plasma
- Mobilizes substances needed for cellular metabolism
- Stimulates gluconeogenesis
 - Decreases glucose utilization
- Immunosuppressant
- Decreases migration of macrophages
 - Decreases phagocytosis
Role of the Immune System
- Immunologic conditions may be triggered by stress
- Immune, nervous, and endocrine systems may be affected by stress reaction

Stress, Coping, Illness Interrelationships
- Ill-effects of stress determined by:
 - Nature, intensity, and duration of stressors and individual’s perception
 - Individual coping skills
- Person must:
 - Recognize signs and symptoms of stress
 - Use stress management techniques:
 - Meditation
 - Imagery

Factors Causing Disease
- Genetic factors
 - Chromosomal
 - Polygenic
- Environmental factors
 - Microorganisms
 - Lifestyle
 - Physical environment
 - Psychosocial environment
Analyzing Disease Risk

- Disease rates

- Statistics commonly used to assess societal impact of disease:
 - Incidence rate
 - Prevalence rate
 - Mortality rate

Causal and Noncausal Risk Factors

Disease Risk

- Familial disease tendency

- Aging and age-related disorders
Conclusion

Paramedics should appreciate the correlation of pathophysiology with disease processes to better understand, anticipate, direct, and provide appropriate care to patients.