Chapter 20
Trauma Systems/Mechanism of Injury

Objectives
- Describe incidence and scope of traumatic injuries and death
- Identify roles of the trauma system
- Predict injury patterns
- Describe injury patterns in specific blunt trauma
- Describe the role of restraints in injury prevention and injury patterns

Objectives
- Discuss how organ motion contributes to injury in each body region
- Identify injury patterns associated with motorcycle and all-terrain vehicle collisions
- Describe pedestrian injury patterns
- Identify sports-, blast-, fall-related injuries
- Describe factors influencing tissue damage from penetrating trauma
Scenario

It takes a while to find the patient in the woody location. He is a 40-year-old who was shot in the abdomen. His skin is pale and wet, and his clothes are saturated with blood. You administer oxygen, remove his clothing, and load and go, starting two large bore IV lines en route. His vital signs are: BP-70 by palpation, P-136/min, R-28/min.

Discussion

- What is your first concern when responding to a shooting?
- Why should you try to find out what type of gun and ammunition were used?
- What clues can you look for to determine what distance he was from the shooter?
- How will you distinguish entrance from exit wounds?
Phases of Trauma Care

- Three phases
 - Preincident
 - Incident
 - Postincident

Prevention of Trauma Deaths

Trauma System Components

- Injury prevention
- Prehospital care
- Emergency department care
- Interfacility transportation (if needed)
- Definitive care
- Trauma critical care
- Rehabilitation
- Data collection/trauma registry
Trauma System

- Role of the paramedic
- Trauma centers
- Hospital categorization

Transport Considerations

- Level of care and hospital choice is based on:
 - Patient needs and condition
 - Advice of medical direction
- Ground transport
- Aeromedical transport

Energy

- Trauma injuries
 - Energy transfer from external source to human body
- Extent of injury determined by:
 - Type of energy applied
 - How quickly it is applied
 - To what part of the body it is applied
Physics Laws

- Newton's first law of motion
- Conservation of energy law
- Newton's second law of motion

Kinematics

- Predicting injury patterns

- Consider:
 - Patient’s age
 - Protective factors
 - Mechanism of injury
 - Force of energy applied
 - Anatomy
 - Energy

Blunt Trauma

- Injury produced by compression and change of speed
 - May disrupt tissue
- Direct compression or pressure on a structure
 - Most common type of force in blunt trauma
- Injury depends on:
 - Time of compression
 - Force of compression
 - Area compressed
Motor Vehicle Collision

- Three impacts as energy is transferred
 - Vehicle strikes object
 - Occupant collides with inside of car
 - Internal organs collide inside body

Motor Vehicle Collision

- Vehicle crash injuries depend on:
 - Type of collision
 - Position of occupant
 - Use or nonuse of restraint systems
 - Active or passive

Motor Vehicle Collision

- Type of impact
 - Head on
 - Lateral
 - Rear end
 - Rotational
 - Rollover

 Predictable injury patterns in each type of collision
Head-On (Frontal) Impact

- Forward motion stops abruptly:
 - First collision
 - Second collision
 - Third collision

Head-On (Frontal) Impact

- Occupant usually travels in pathways relative to dashboard
 - Down and under
 - Up and over

Down-and-Under Pathway

- Occupant goes downward into vehicle seat and forward into dashboard or steering column
 - Knees strike dashboard
 - Upper legs absorb impact
Up-and-Over Pathway

- Body strikes steering wheel
- Momentum of thorax is absorbed by ribs and chest organs

Lateral Impact

- Vehicle is struck from side
- Injury patterns differ if vehicle:
 - Remains in place
 - Moves away from point of impact

Rear-End Impact

- Vehicle struck from behind
 - Rapidly accelerates
 - Auto moves forward under occupant
- Forward collisions
 - Damage = Sum of both vehicles’ speeds
- Rear-end collisions
 - Damage = Difference between two vehicles’ speeds
Rotational Impact

- Off-center portion of vehicle strikes an immovable object
 - Or one that is moving:
 - More slowly
 - In the opposite direction

Rollover Accidents

- Occupant tumbles inside auto
- Injured wherever body strikes vehicle
 - Impacts at many different angles
 - May be multiple-system injuries
- Injuries difficult to predict
 - May produce any injury pattern seen in other types of collisions

Restraints

- Lap belts
- Shoulder straps
- Airbags
- Child safety seats
Deceleration Injuries

- After impact organs continue to pull against structures that attach them to the body
 - Organs may separate from attachments
 - Vascular pedicle or mesenteric attachment injury may cause hemorrhage

Head Injuries

- Head strikes stationary object
- Cranium stops abruptly
- Brain continues moving and is compressed against skull

Thoracic Injuries

- Aorta often injured by severe deceleration forces
 - Usually sheared at ligamentum arteriosum attachment
- Rupture causes rapid exsanguination
Abdominal Injuries

- Abdominal organs and retroperitoneal structures (most commonly the kidneys) may be affected by deceleration forces

Head Injuries

- Compression to head may cause:
 - Open fractures
 - Closed fractures
 - Bone fragment penetration (depressed skull fracture)

- Associated injuries
 - Brain contusion
 - Lacerations of brain tissue

Head Injuries

- Compression forces to skull can produce hemorrhage from:
 - Fractured bone
 - Meningeal vessels
 - Brain

- If facial structures are involved, soft tissue trauma and facial bone fractures may occur
 - Consider CNS injury and cervical fracture

Head Injuries

- Compression injury to vertebral bodies
 - Compression fracture
 - Hyperextension injury
 - Hyperflexion injury

Thoracic Injuries

- Lungs and heart often involved in compression injury to thorax
- “Paper bag effect” may cause serious lung injury

Abdominal Injuries

- Compression injuries
 - Solid organ rupture
 - Vascular organ hemorrhage
 - Hollow organ perforation into peritoneal cavity
- Common injuries
 - Lacerations to spleen, liver, and kidney
 - Rupture of a full bladder
- Predictable injuries
Other Motorized Vehicular Collisions
- All-terrain vehicles (ATVs)
- Snowmobiles
- Motor boats
- Water bikes
- Jet skis
- Farm machinery
- Motorcycles

Motorcycle Collisions
- Head-on impact
- Rider over handlebars
- Injuries may include:
 - Head and neck
 - Chest and abdomen
 - Femur, lower leg fractures
 - Perineal injuries

Motorcycle Collisions
- Angular impact
- Rider caught between bike and another object
- Crush injuries to affected side
 - Open fractures of femur, tibia, fibula
 - Fracture dislocation of malleolus
Motorcycle Collisions
- Laying the motorcycle down
- Massive abrasions
- Fractures of affected side

Personal Protective Equipment
- Riders of small motor vehicles
 - Boots
 - Leather clothing
 - Eye protection
 - Helmets
 - Absorb energy, reduce head and facial injuries
 - Helmet non-use increases head injuries > 300%

Pedestrian Injuries
- Impacts in auto-pedestrian collisions
 - Bumper of vehicle strikes body
 - Pedestrian strikes vehicle hood
 - Pedestrian strikes ground or another object

Pedestrian Injuries

- Predictable injuries depend on:
 - Age of pedestrian
 - Height of pedestrian relative to bumper and hood of car
 - Velocity of vehicle

Adult Pedestrian

- Most turn away from oncoming auto
 - Lateral or posterior impacts
- Initial impact
- Second impact
- Third impact

Child Pedestrian

- Tend to face vehicle
 - Often frontal impact
- Initial impact
- Second impact
- Third impact
Common Sports Injuries

- Contact sports
 - Football
 - Basketball
 - Hockey
 - Wrestling

- Racquet sports

- Swimming and diving

Common Sports Injuries

- High-velocity activity sports
 - Downhill skiing
 - Water skiing
 - Bicycling
 - Rollerblading
 - Skateboarding

Causes of Sports-Related Injuries

- Forces of acceleration and deceleration

- Compression

- Twisting

- Hyperextension

- Hyperflexion
Blast Injuries
- Explosion of volatile substances
 - Primary blast injuries
 - Secondary blast injuries
 - Tertiary blast injuries

Vertical Falls
- Evaluate:
 - Distance fallen
 - Body position on impact
 - Type of landing surface
- Vertical fall injuries a result of deceleration and compression

Penetrating Trauma
- Cause tissue disruption
 - Despite velocity
 - Penetrating trauma
- Two forces
 - Crushing
 - Stretching
Penetrating Trauma

- Factors that determine which of the two mechanisms of injury predominates:
 - Character of penetrating object
 - Speed of penetration
 - Type of tissue it passes through or into

Cavitation

- Opening produced by a force pushing body tissues laterally away from tract of a projectile

Cavitation

- Cavitation related to:
 - Tissue density
 - Ability of tissue to return to its original shape and position
Permanent and Temporary Cavitation

Ballistics

- Projectile's effect on body determined by energy created and dissipated by object into surrounding tissues
- Damage and energy levels of projectiles
 - Low, medium, and high

Low-Energy Projectiles

- Knives, needles, and ice picks
- Sharp cutting edges cause tissue damage
- Tissue crushed is usually small because wounding force is small
- Damage usually limited to pathway of projectile
Stab Wound

Stab wound in which a knife has pierced the liver and pancreas and entered the splenic vein.

Stab Wounds

- Attempt to identify wounding object
- Consider:
 - Multiple wounds
 - Embedded penetrating objects
 - Damage to organs of thorax and abdomen
 - Penetration of multiple body cavities
 - Stab wounds to back and flank—high risk

Medium-Energy Injuries

- Muzzle velocity of <1500 ft per sec
- Handguns and some rifles
- Injury tract usually 2-3 times diameter of projectile
High-Energy Injuries

- Muzzle velocity of >1500 ft per sec
- Injury tract usually 2-3 times diameter of projectile

Medium- and High-Energy Projectiles

- Localized crushing of tissue in missile’s path
- Momentary stretch of surrounding tissues
- Wounds vary with amount and location of crushed and stretched tissue

Wounding Forces

- Wounding forces depend on:
 - Projectile mass
 - Deformation
 - Fragmentation
 - Type of tissue struck
 - Striking velocity
 - Range
Wounding Forces

Bullet passing through tissue

Shotgun Wounds

- Short range, low velocity
- Tissue damage depends on:
 - Gauge of gun
 - Size of pellets
 - Powder charge
 - Distance from victim

Entrance and Exit Wounds

- Appearance of entrance and exit wounds affected by:
 - Range
 - Barrel length
 - Caliber
 - Powder
 - Weapon
Entrance Wound

- Round or oval
- May be abrasion rim or collar
- If discharged at intermediate or close range:
 - Powder burns (tattooing) may be present

Bullet Wound

Powder marks show this 0.22-caliber bullet wound was inflicted at close range.

Shotgun Wound

Short-range shotgun wound to forearm

Exit Wounds

- Generally larger than entrance wounds

- Skin may “explode”:
 - Ragged and torn tissue
 - Splitting and tearing often produces a star-burst or stellate wound

Exit Wound

Exit wound by powerful shotgun at close range

Head Injuries

- Gunshot wounds to head are typically devastating
 - Often severe facial and neck injuries
 - Significant blood loss
 - Difficulty maintaining airway control
 - Spinal instability
Thoracic Gunshot Injuries

- Severe injury to pulmonary and vascular systems possible
 - Pneumothorax and tension pneumothorax
 - Internal and external hemorrhage
 - Thoracic trauma possible without visible chest wounds

Abdominal Gunshot Injuries

- Surgery often needed to determine extent of injury
- May affect multiple organ systems
 - Damage to air-filled and solid organs
 - Vascular injury
 - Spinal column and spinal cord injury

Extremity Injuries

- Gunshot wounds to extremities:
 - Occasionally life threatening
 - May result in lifelong disability
Conclusion

The paramedic must understand trauma systems and be able to recognize mechanisms of injury to enhance patient assessment and emergency care.

Questions?